
708 HOLOGRAPHIC METHODS IN X-RAY CRYSTALLOGRAPHY. IV 

GOODMAN, D. M., JOHANSSON, E. M. & LAWRENCE, T. W. (1993). 
Multivariate Analysis: Future Directions, edited by C. R. RAO, ch. 
11. Amsterdam: Elsevier. 

HODEL, A., KtM, S.-H. & BRONGER, A. T. (1992). Acta Cryst. A48, 
851-858. 

HYNES, T. R. & Fox, R. O. (1991). Proteins: Struct. Funct. Genet. 10, 
92-105. 

JONES, T. A. (1985). Methods Enzymol. 115, 157-171. 
LOLL, P. J. & LATrMAN, E. E. (1989). Proteins: Struct. Funct. Genet. 5, 

183-201. 
MAALOOF, G. J., HOCH, J. C., STERN, A. S., SZ6KE, H. & SZ6KE, A. 

(1993). Acta Cryst. A49, 866-871. 

OGATA, C. M., GORDON, P. F., DE VOS, A. M. & KIM, S.-H. (1992). J. 
Mol. Biol. 228, 893-908. 

PFLUGRATH, J. W., SAPER, M. A. & Quioc8o, F. A. (1984). Methods 
and Applications in Crystallographic Computing, edited by S. HALL 
& T. ASHIAKA, p. 407. Oxford: Clarendon Press. 

PRESS, W. H., FLANNERY, B. P., TEUOLSKY, S. A. & VETYERLING, W. T. 
(1989). Numerical Recipes: the Art of Scientific Computing 
(FORTRAN version). Cambridge Univ. Press. 

STARK, H. (1987). Editor. Image Recovery:. Theory and Application. 
Orlando: Academic Press. 

SZ6KE, A. (1993). Acta Cryst. A49, 853-866. 
WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321. 

Acta Cryst. (1995). A51, 708-716 

Solution of the Phase Problem in Crystallography and Application to Dynamical Electron 
Diffraction 

BY WILLIAM F. TIVOL 

Wadsworth Center for Laboratories and Research and the School of Public Health, Empire State Plaza, PO Box 509, 
Albany, NY 12201-0509, USA 

(Received 5 September 1994; accepted 6 March 1995) 

Abstract 

Unitarity, a fundamental principle of scattering theory, 
leads to the prediction of an essentially unique set of 
phases for the scattering amplitude from a complete 
knowledge of the differential cross section or, in the case 
of a crystal, from the diffracted intensities. The Sayre 
equation and all the direct methods of phasing following 
therefrom are derived as a special case of unitarity for 
zero excitation error. Dynamical and kinematical scatter- 
ijag are considered, and the relationship between them, 
S = exp(irnzK), is obtained. Applications to the case of 
electron diffraction including for non-zero excitation 
error are discussed. 

Introduction 
When diffraction was first used to calculate molecular 
structures, it was realized that in addition to the 
intensities, which were directly measured, phases had 
to be determined for each of the reflections. Many 
schemes were devised to ascertain these phases, such as 
comparing isomorphous crystals, one of which had one 
or more heavy atoms that were lacking in the other, or 
looking at an unknown molecule which had as part of its 
structure a molecule whose structure was already known 
(Argos & Rossmann, 1980). These methods were very 
successful; however, not all materials of interest could be 
crystallized with and without heavy atoms or described 
by a known part plus an unknown part. 

An alternative procedure is the derivation of the phases 
from the values of the measured intensifies. All such 

techniques of using the known intensities to provide 
information about the unknown phases are collected 
under the category of direct methods of phase determina- 
tion. Many of these methods are based on an equation 
first derived by Sayre (1952), who calculated the 
diffraction amplitudes of an arrangement of equal non- 
overlapping atoms and of the same arrangement of 
'squared atoms'. By comparing the Fourier expansions of 
these two expressions, he was able to relate one (phased) 
amplitude to a convolution of all other (phased) 
amplitudes: 

F(H) -- (O/V))-~ F(K)F(H - K), (1) 
K 

where H and K are sets of Miller indices, F is the 
complex amplitude, V is the unit-cell volume and 0 is a 
constant of proportionality. 

Direct methods of phasing diffraction patterns have 
been used very successfully in ab initio structure 
solutions in both X-ray (Ladd & Palmer, 1980; Day & 
Pendry, 1993; Glusker, 1993) and electron crystal- 
lography (Dorset, 1993; Dorset, Tivol & Turner, 1991, 
1992, 1993). Phase extension, where initially the low- 
order phases are determined by some means and direct 
methods are used to relate the higher-order phases to the 
low-order ones, have also been quite successful (Dorset, 
1993; Dorset, Kopp, Fryer & Tivol, 1995). 

It has been stated many times that the phases can be 
extracted from the measured intensities because the 
electron density is everywhere positive and the unit cell 
of a crystal consists of equal non-overlapping point-like 
atoms. It is also stated that the fact that the atoms are not 

©1995 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 



WILLIAM F. TIVOL 709 

equal for most interesting cases is not too important from 
a practical point of view. It would, however, be desirable 
to have a firm theoretical foundation for the use of direct 
methods even for circumstances for which it has 
heretofore not been recognized that they apply. 

In particular, one result of the present work is that the 
phase of the scattering amplitude can be derived from the 
differential cross section for the general scatterer, and for 
a crystal, even in the cases of dynamical or other multiple 
scattering, the unitarity of the scattering operator implies 
that an essentially unique set of phases for the scattering 
amplitudes is determined by the intensities. 

It must be emphasized that the dynamical amplitudes 
are not related to the structure factors as simply as are the 
kinematical amplitudes, so that solving a structure by 
means of the dynamical amplitudes requires more than 
just the correct determination of the phases. Although the 
complete process of calculating the structure from 
dynamical diffraction information is beyond the scope 
of this paper, there is some discussion of the process in 
the last two sections. 

The triplet formula is perhaps the best known direct 
phasing technique. To use this formula, the diffraction 
amplitudes are listed in order of their magnitudes 
(amplitudes normalized to remove the overall angular 
dependence of scattering are most often used at present). 
Those amplitudes greater than a cut-off value are 
examined to see whether there are  triplets whose Miller 
indices add to zero (e.g. 123, 204 and 121). Whenever 
such triplets are found, the sums of their phases are set to 
zero. In addition to these relationships, phases can be 
chosen for (in general) three structure factors that 
determine the unit-cell origin. Other triplet relationships 
that include up to three or so algebraic constants can also 
be used. A set of potential maps is constructed, one map 
for each choice for the algebraic constants. One of the 
maps must be interpretable in terms of expected atomic 

F(O) F(K) F(H-K) 

Fig. 1. Illustration of how the triplet relationship follows from the Sayre 
equation. 

positions. If not, then a different cut-off is used for the 
amplitudes and the process is started again. Once a 
starting map has been selected, the phases for all the 
observed reflections are calculated for the atoms 
localized on the map. A second map is constructed from 
the phased amplitudes and, if the process is working, new 
atoms appear on the map, and the old peaks are 
reinforced. In this way, better maps are successively 
constructed, and the positions are refined from the best 
map using the usual Fourier techniques. 

To see how the triplet formula follows from the Sayre 
equation, F(H) and individual terms of the sum are 
shown in the complex plane in Fig. 1. It is assumed that 
F(H) is large as shown in Fig. 1. If one of the terms in 
the convolution is also large (again as shown in Fig. 1), it 
is likely to be approximately parallel to F(H), since there 
is not enough excess length in the other terms of the 
convolution to add up to F(H) in the case where the 
phase of the large segment differs greatly. For centro- 
symmetric unit cells, the phases can only be 0 or zr, so 
terms must be parallel or antiparallel, and the triplet 
relation is especially useful in these circumstances. In a 
few instances, when the magnitudes of F(K) and 
F(H - K) are large enough, the likelihood of parallelism 
is 100%, but usually there is only a probabilistic 
relationship with a likelihood of somewhat less than 
100%. 

Simultaneous consideration of all the triplet relations 
for a particular value of H contained in the Sayre 
equation, each with its associated probability of being 
correct, leads to a phase prediction 

~_, w n l F ( K ) I I F ( H  - K)I sin(~0K + qM-K) 
t a n  ~on - -  ~ w n l F ( K ) l l F ( H  - K)I c o s ( ~  + ~0n-K) ' 

(2) 

where ~o is the phase of the complex amplitude and w is 
the weighting factor; this is the tangent formula for the 
phases. 

Simultaneous consideration of all the relationships 
defined by the Sayre equation for all H leads to other 
phase-determining algorithms. One particular algorithm, 
maximum entropy, calculates the joint probabilities of a 
new set of phases given a starting set, examines the 
likelihood of observing the moduli of the new set given 
the amplitudes of the starting set versus  the hypothesis 
that the starting-set amplitudes are zero, and calculates 
the a pos t e r io r i  probability that the starting set is correct 
given the new set (Bricogne, 1991). Proceeding in this 
way, predictions are eventually made for all phases. 

The triplet formula gives unambiguous predictions but 
requires a set of large normalized amplitudes. The 
tangent formula and maximum entropy give more 
ambiguous results (the correct solution path must be 
chosen from among several possibilities at each stage, 
thus, they are called multisolution methods) but, because 
all the phase predictions are used simultaneously, either 
for one or for all phases, the variation in the sizes of the 
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normalized amplitudes, needed for the triplet method, is 
not required for the multisolution methods. 

One of the most fundamental laws in physics is that 
the scattering operator, S, is unitary. Unitarity means that 
total probability is conserved; i.e. if, initially, there is a 
distribution of states whose total probability is unity, 
then, after the scattering process, the total probability of 
all the final states is also unity. 

Mishnev (1991) pointed out that the Sayre equation 
can be derived as a special case of unitafity. Gerber & 
Karplus (1972) showed that the phases can always be 
derived from the intensities of a scattering potential that 
obeys the unitary relation and that, under certain 
conditions, it is possible to write an algorithm that 
converges uniformly to a unique set of phases [excepting 
the known ambiguities: (1) if the.operator A is a solution 
to the unitary equation, so is -AT; (2) each phase, tp, can 
be replaced by ~0+2nrr]. Newton (1968) proved 
explicitly the existence of an essentially unique solution 
for the phases (except for the ambiguities listed above) 
and derived an algorithm for the solution under fairly 
non-restrictive conditions, and he showed the existence, 
but not the uniqueness, of a solution for any unitary 
scattering process. Martin (1969) showed the uniqueness 
of the phase solution within a broader range of conditions 
and gave heuristic evidence that the phase solution is 
unique whenever unitafity holds. Sakurai (1967) derived 
the unitary equation covalently and applied it to 
scattering of relativistic electrons. The net result of this 
set of papers is that, for all but a small class of scattering 
potentials, an essentially unique solution for the phases is 
determined by the values of the differential cross section, 
and for that small class there is reason to believe that the 
phase solution is also essentially unique. 

These papers must be examined closely in order to be 
sure that the results are applicable to the case of 
dynamical scattering in electron diffraction. Gerber & 
Karplus (1972) concentrated on scattering of electro- 
magnetic waves with the express purpose of applying the 
results to X-ray crystallography. Towards the end of the 
paper, they considered a general scatterer, where they 
showed that similar equations can be used to determine 
the phases, but convergence of the equations and 
uniqueness of the solution were not proved. 

The proofs in Gerber & Karplus (1972) invoke the 
methods used by Newton (1968) and Martin (1969) and, 
in Newton's paper, the differential cross section must be 
constrained so that it cannot be too small in any one 
interval relative to its value at all other points, and that it 
cannot be zero anywhere. Furthermore, he assumed that 
the differential cross section is continuous. For the case 
of diffraction from an ideal inf'mite crystal, however, the 
differential cross section is zero almost everywhere and 
is not continuous. Fortunately, the need for non-zero 
cross sections is only to make an integral, 

P/  

I -- fAk,,,k,Ak,,,kdk /Ak,,k, (3) 

non-singular. A is the amplitude for scattering from one 
momentum state (k) into another. Thus, if there is a point 
where the denominator is zero, it suffices to have the 
numerator go to zero in the same way. If two points are 
on a regular lattice, the point at the sums of their indices 
is also on the lattice. Therefore, if the point at the sums of 
indices is not on the lattice, then at least one of the other 
points must also not be on the lattice. In this case, the 
integral can rigorously be replaced with a sum over the 
lattice points, continuity is not then required, and the 
proof is still valid.* 

The same caveats apply to the proofs in Martin's 
(1969) paper, since the same procedures were used. In 
the consideration of the general scatterer that obeys 
unitarity, but for which the cross sections do not fall 
within the restrictions that allow one to show rigorously 
that the solution is essentially unique, Martin considered 
the case where the cross section can be described exactly 
by a finite number of partial waves, and concluded that, 
once again, an essentially unique solution is determined 
by unitarity. 

Extension of the results of Martin 

In the following, dcr/df2 -- 1/k2lAk , kl 2. This 
, ^ 

gives for the (unitary) scattering operator S = ] + 
(ik/27r)A. The unitary relation is just 

~ t = ~ - I  or ~ t = ] ,  (4) 

where "t" means conjugate transpose. In terms of ,4, we 
have 

~ - ?t t = (ik/2rr)A t A. (5) 

Specifying the initial~: and final states and inserting a 
complete set of intermediate states on the right-hand side 
gives 

a~ - a~ = (ik/2;,r) E a~a , i ,  (6) 

where A is the scattering amplitude between pairs of 
states. For initial momentum vector k, final momentum 
vector k' and intermediate-state momentum vector 
k", conserving momentum and energy gives 

* For the case of systematic absences, where the amplitude at a lattice 
point is zero, the unitary equation may not give a solution for that phase. 
However, since terms containing that phase are always multiplied by 
the amplitude, they make no contribution to the equations determining 
the other phases. Furthermore, the phase of a zero amplitude has no 
physical meaning. 

~/N.B. The fact that the unitary equation is an operator equation 
allows complete freedom to choose the initial state. Thus, in addition to 
the usual experimental condition where the initial state is a plane wave 
along the z axis, the initial state can be chosen to represent a 
combination of experiments where the initial state is, for example, 
incident plane waves along several zone axes with phases randomized 
or an incoming modulated spherical wave that does not correspond to a 
realizable experimental condition. 



WILLIAM F. TIVOL 711 

k = Ikl = Ik'l = Ik"l, and therefore we find 

Ak,,k - -  A[ , ,k  "-- (ik/2zc) fA~,,,k,,Aw,,kdl2w,. (7) 

A~,,.k If Ak,,,k is expressed as a partial-wave series, is the 
partial sum for l < L, 

L l 

AL,,,k = ~ ~ (2l + 1)exp(iSl,m)SinSl,mY~(Ok,,,k, ~Ok,,,k ) 
0 m = - - l  

(8) 

(using the spherical harmonic functions instead of 
Legendre polynomials, since the scattering potential is 
not necessarily cylindrically symmetric). In the case 
where the partial wave expansion converges, i.e. where 
Ak,,,k is of bounded variation, then, for any e > 0, there is 
an L, such that, for all L > L,, 

f [Ak,,, k L 12 - Ae,,k dI2k,, < e, (9) 

with similar equations for Ak,,k,, and Aw, k. Furthermore, 
since the total intensity of the scattered wave cannot 
exceed the intensity of the incident wave, O'to t < 1, and 

O'to t = f IAk",kl2dI2k " 
cx~ 1 

-- ~ ~ 1(21-t- 1)exp(iSt,m)SinSl,ml2; (10) 
0 m = - - I  

thus, again, for L > L~, we have 

oo l 
~ ](21 + 1)exp(iSt,m)SinSl,ml 2 < e. (11) 

L m = - I  

Taking L max to be the largest of the four values of L, 
found, the equation for the phase (Martin, 1969), 

4zrlAk,,k I sin(~0k, k) 

: f [Ak,',kllAk,',k, I COS(~Ok",k - -  ¢flk",k') d ~ k " ,  (12) 

has coefficients of the phases that are arbitrarily close to 
[ m a x  those of the sequence of equations with L > -E , 

4rrlA~,,k [ sin(q~,,k) 

= flA~,,kllALk,,.k, l C o s ( ~ , , k -  ~,,  k,) dS2k,,, (13) 

which have the essentially unique s o l u t i o n s  ~k'.k" For 
each successive equation, the functions IALI are con- 
tinuous and differentiable; thus, since the sequence 
of functions IALI converges to IAI, the sequence of 
functions, ~k',k, converges to qgk,,k in the limit L---~ c<~. 
Note that ~ ' ,k  can be a continuous function even when 
IAk,,k I has discontinuities, such as for the case of an ideal 
crystal. 

Finally, to apply the foregoing to scattering by a 
crystal, consider a column of n z unit cells having an axis 
parallel to the incident beam. The scattering from such a 
column is well behaved, i.e. the differential cross section 
is continuous, differentiable and never equal to zero, and 
the phase solution is, therefore, essentially unique. Now 

consider a set of columns of n~ unit cells and extending 
n x cells in the x direction and ny cells in the y direction. 
The scattering is still well behaved and the phases can 
still be determined. As n x and ny increase, the amount of 
dynamical scattering changes somewhat, since electrons 
can be scattered by more than one column. However, 
since only the electrons near the edge can scatter through 
the edge of the crystal, and, therefore, fail to undergo the 
same extent of dynamical scattering as the rest, then, as 
the outer columns of the crystal become a smaller 
fraction of the total area, the extent of dynamical 
scattering converges to a limit. Furthermore, if the 
contribution of dynamical scattering is the same, the 
phase solution for n x x ny cells is the same for all n x and 
ny, since it is the identity of the phases that leads to the 
phenomenon of diffraction in the first place. Thus, for a 
crystal of infinite extent in x and y, the phases are 
determined essentially uniquely by unitarity. A crystal 
extending infinitely in the z direction is not treated by 
scattering theory, since the S operator takes the 
asymptotic limit wave function at t = - ~  (thus at 
z = - o o )  into the asymptotic limit wave function at 
t = +cx~ (thus at z = +oo)  and the asymptotic limit 
exists only when the potential goes to zero for large 
Izl. 

Therefore, for the case of ideal crystals of finite 
thickness, whether of finite or inf'mite extent, the 
phases are determined essentially uniquely by the 
intensities. 

The ambiguity that both A and _~I" are solutions 
can be resolved by consideration of the meaning of - , 4 1  . 
From the definitions of A and S and the expressions for 
the unitary relation in teons of these operators, since 
S.is I + (ik/2zc),4, then ~T~is I -  ( i k / 2 r r )AY  and, since 

T is the inverse of S, - / ~ t  represents the time-reversed 
diffraction process, in which a set of beams of various 
amplitudes and phases scatters and produces a single 
final beam that corresponds to a beam of electrons 
emerging from the top of the scatterer and moving up the 
microscope-lens column. From consideration of the 
situation, it will be seen that the appropriate set of 
phases to accomplish this is r r - ~ 0  (Newton, 1968), 
where ~o corresponds to the non-time-reversed diffrac- 
tion. 

Derivation of the Sayre equation from the unitary 
relation 

The following is by and large stated in papers by 
Mishnev and his co-workers (Mishnev & Shvets, 1979; 
Mishnev & Belyakov, 1992). For an ideal crystal, the 
Bragg condition can be expressed as k ' - k  = 2rrH, 
where H is a reciprocal-lattice vector. In the condition of 
interest, both k " - k '  and k " - k  must also be perpen- 
dicular to lattice planes, e.g. H -  K and K. This 
relationship of the vectors in the Bragg condition implies 
that the scattering amplitudes can depend only on the 
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differences of the momentum vectors ( k " - k  or 
k" - k'), i.e. only on H and K. 

This can be seen by considering the conditions 
illustrated in Fig. 2. A beam is incident in the k direction 
and is diffracted in the k" direction. Then the beam is 
again diffracted in the k' direction. In this situation, the 
undiffracted beam is characterized by Miller indices 0, 
the once-diffracted beam by K and the twice-diffracted 
beam by H. If, however, a beam were incident in the k" 
direction, the undiffracted beam (still in the k" direction) 
would be characterized by Miller indices 0'. The same 
shift, from K to 0', applied to a once-diffracted beam in 
the k' direction results in this beam being characterized 
by Miller indices H - K. Thus, the transition from K to 
H is the same as the transition from 0 to H - K, or the 
amplitudes depend only on the vector difference between 
the initial and final momenta. This is true only in the 
event that all reflections considered are in the exact 
Bragg condition. 

Furthermore, since the scattering amplitude is non- 
zero only when H is a lattice vector, the integral in the 
unitary relation becomes a sum [compare with equation 

/ 

I I 
IS[ 6 0  " 

Fig. 2. Illustration of  the independence of the transition amplitude of the 
absolute momentum directions. The solid lines represent the path of a 
particle scattered first in the k" direction then in the k' direction. The 
dashed and dotted lines axe extensions of the scattering path in the 
directions k and k". One of the two planes is perpendicular to k and 
the other to k". The vector between 0' and H - K is the same as that 
beween K and H, showing the dependence of the transition only on 
the difference between the reciprocal lattice vectors. N.B. This is true 
only if each of the reflections is in the exact Bragg condition. 

(6) above]: 

A(H) - A*( -H)  = (ik/2zr))-~ A(H - K)A(K), (14) 

but, in the absence of anomalous scattering, Friedel 
symmetry gives A*( -H)  = A(H), so, taking the term for 
K = H to the left-hand side of the equation, we have 

A(H)A(0) = - ~ ' A ( H  - Kpt(K),  (15) 

where the prime means that K ~ H. Multiplying by A(0) 
we get 

A(H)A(O)A(O) = - A ( 0 )  ~'A(H - K ) A ( K ) .  (16)  

Furthermore, from (15) for H = 0, we derive 

A(0)A(0) = - )-~ 'A(-K)A(K) = - y~' IA(K)I 2. (17) 

Thus, substituting (17) into (16), we have 

A ( H )  = [-A(O)/A(O)A(O)] ~-~'A(H - K ) A ( K )  

= [A(0)/)-'~' IA(K)I2]~-'~'A(H - K)A(K). (185 

Since, in (17), each value of K appears twice, once as 
K and once as - ( - K ) ,  (18) is also valid if the primed 
sums mean that K ~ H and K 5~ 0 and that, in the sum 
ofA(K)A(-K) ,  K ~ 0 and each K occurs only once, e.g. 
the sum is over the upper half-plane. 

Where Friedel symmetry is violated, the difference of 
the Friedel pair, A(H) - A*(-H) ,  must be included in the 
calculation. Therefore, (15) becomes 

A(H){A(0) + (2zri/k)[1 - A*(-H)/A(H)]}  

= - ~'A(H - K ) A ( K ) ,  (19)  

equation (17) is 

A(0)A(0) = - ~ ' A ( K ) A ( - K ) ,  (20) 

and (18) can be written 

A ( H )  = [A(0){  ~ ' A ( K ) A ( - K ) ( 1  + (2zri/k) 

× ttA<n) - A * ( - a ) ] / A ( a ) A ( O ) } )  }-'] 
x ~-'~' A(H - K)A(K). (21) 

Dynamical  scattering and the kinematical scattering 
operator 

Since the structure factors are simply related to the 
scattering amplitudes only for the case that the scattering 
can be treated kinematically, it is of interest to examine 
the relationship between dynamical and kinematical 
scattering. 

For unitary,,operator S, ~ere  is a generating operator 
K', such that S = exp(irn~K) (Sturkey, 1962); here r is 
the thickness of a unit cell and n~ is the thickness of the 
crystal in unit cells. Let C be the unit-cell dimension in 
the z direction. Slice the crystal N times perpendicular to 
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the z axis. Let Ne be large enough such that for N > N~ 
the change in potential throughout any slice is less than s, 
i.e. for all z i such that Iz I - z21 < Cnz/N we have 

IV(x, y, z O -  V(x, y, z2)l < e. (22) 

Then slice each of the N slices n' times. Each of these n' 
slices from one of the N slices has a potential that is the 
same to an arbitrary prec~ion. The scattering operator for 
the mth of the N slices, Sm = (S~l.m)", and we find 

^ li t  

--" I-I  Sm = I- i[  ~ .or- (ik/2:rr)~4m] = 1-I[ ~ + (ik/2:rr)As,.m] , 

(23) 

where each term is raised to the power n' and then the 
product is taken in order (this is an operator product 
which need not commute). As n' --+ oo, A,l,m becomes 
inversely proportional to n'. So, letting c be a constant of 
proportionality, we get 

gSm -'+ [~* + (ik/2Jr)(c/n')f~m]'--+ exp[(ikc/2Jr)ffm]. 
(24) 

Letting c = 2:rr'rnz/k, and remembering that the R'i can 
incorporate a real constant factor so that r can be the 
same for each slice, we have 

~S ----+ l-I exp(irnzf(m). (25) 

Now, if the scattering potential arises from two or 
more sources, the scattering from the total potential can 
be expressed in terms of the scatterings from each of the 
sources. Furthermore, the potential obeys the principle of 
superposition, so that the total potential is just the sum of 
the potentials arising from each of the sources. For the 
interaction Hamiltonians/1' for the sources and/-}' for 
the total, Newton (1982) derives the expressions for the 

operator 

T(E) = Ell[ + E B : G + ( E ) T ( E )  (26) 
i i 

and 

f(e) = EL(e) + E E L(E)o+(e)tj(E), 
i i j # i  

(27) 

with 

T/'(E) = i-I[ + fl;G+(E)T(E) 
= ~i(E ) + ~ L(E)G+(E)~j(E)" (28) 

j¢i 

Substituting (28) into (27) repeatedly gives 

= E L + E E + E E E . . . .  
i i jvki i j s ~ i k ¢ j  

(29) 

This expression contains the s yrlu'ne~zed forms of 
the products of Ti, such as (T1G+Tz + T2G+T1), so it 

is invariant under exchange of 7"i and 7"j. For the case 
of two sources, we have 

+ + + . . . .  ( 3 0 )  

^ ^ ^ ^ 

Thus, S1S2 = S2S1, or S1 and $2 commute. 
Diagonalizable operators can be expressed by the 

spectral representation (Deif, 1982) 

ff~ -- E ~iEi, (31) 

where/~ is the projection onto the eigenvector. Since 
these projections are idempotent and orthogonal, i.e. 
EiEj = 80El, for functions expressible in a power series, 
it is easy to see that 

f ( ,4)  = E f ( A i ) E i .  (32) 

Two commuting operators can be simultaneously 
diagonalized; thus, a common set of eigenvectors can 
be selected for them (Merzbacher, 1961, pp. 153-154). 
Therefore, for S1 and S 2, 

S i  • /¢i ^ = ~ exp(irnz2 ~ )Ej, (33) 

where 2 is an eigenvalue of a/~ operator. Whence, 

CS1S 2 = ~ exp[irnz(2~' + 2/~2)]/~i. (34) 

Note, however, that, since ex,p(a + b) = 
exp(a + b + 2toni), the eigenvalues,, for K i are not 
uniquely determined from those for Si. From (34) and 
(25), taking the ith source to be the ith slice, the 
expression for the total scattering operator is 
S = exp(~-~, irtfi). All the terms with the same z position 
within the unit cell from each of the n z unit cells can be 
gathered together, and letting K be the operator 
correspond~g to one unit cell, we get S = exp(~nzK ). 

Thus, if S is a dynamical scattering operator, K is the 
corresponding kinematical scattering operator (Fujimoto, 
1959). This is analogous to the generator of a f'mite 
rotation being an infinitesimal rotation. Cowley (1975a), 
working in the opposite way from that above, derives an 
equivalent expression for the scattering matrix from the 
Bloch-wave formula for the scattering amplitude. 

For rn~ sufficiently small, K can be found from S (or 
,4) by means of the series for In(1 + x), 

ir, nzK = - y~[-(ik/2:rr)A]"/n 
(35) 

or/~ = -- ~-'~[-(ik/2rc)A]"/nir.n z. 
^ ^ 

Note that, since exp(27rni/) = I, S does not unambigu- 
ously determine K. However, since the operator A is 
essentially uniquely determined by the diffracted in- 
tensities, then, as long as the dynamical scattering is not 
too severe, the kinematical scattering operator is also. 
The criterion 'not too severe' means that (1) the thickness 
is not so great that S is on a different sheet from K, and 
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(2) the series f o r / f  converges rapidly enough so that 
errors in the measurement of the intensities do not 
become large as they propagate through the series. These 
errors can accumulate rapidly when an operator is raised 
to a high power (Cowley, 1975b). In practice, if criterion 
(2) is satisfied, criterion (1) will also be. 

A physical argument for the previous section is that 
the terms of the T operator series represent multiple 
scatterings giving rise to a total scattering, and that, for 
example, the incident particle can either scatter first from 
the first part of the potential and then from the second or 
from the second part then the first. The total scattering 
consists of contributions from single scatterings taken in 
all possible permutations; thus, the total scattering is 
invariant if the ith and jth parts are interchanged, i.e. if 
the order of two partial scatterings is reversed. 

Consideration of the Green-function formalism for the 
solution of the Schrtidinger equation leads to the same 
conclusion. With the Schr/xlinger equation written as 
(V 2 + k2)Tz = U~p, the Green function is the solution for 
a function potential, i.e. (V 2 + k2)G = 4n'8(r - r') 
(Merzbacher, 1961, p. 222), whence 

7f(r) = (2n')- 3/2 exp(tk . r ) - (1 /4n ' )  fG(r,r')U (r') ~(r ')  d 3 r'. 

(36) 

This represents the incident wave plus the waves 
scattered from each point superposed to give the total 
wave. Since each point is equivalent to any other, the 
scattering from any collection of sets of points will be the 
same regardless of the order in which the sets are taken, 
i.e. the scattering operators for each of the sets commute. 

Summarizing the results of this section: (1) for an 
infinitesimal thickness of the crystal, scattering from 
each part is kinematical; (2) the scattering operators for 
finite thickness can be expressed as exponentials of the 
kinematical scattering operators; (3) if we have potential 
source s 1 giving rise to scattering operator S 1 ~ d  
potential source s 2 giving rise to scattering operator S 2, 
then for potential source s~ + s2 the total potential is the 
superposition of the separate potentials, the kinematical 
scattering operators add, and the scattering operators 
for finite thickness commute. This process can be 
repeated for s 3 s 4 etc., so this is true for any number of 
sources. 

Practical applications 

The derivation of the Sayre equation from unitarity 
assumes that the reflections are in the exact Bragg 
condition. For non-zero excitation error, the transition 
from K to H, illustrated in Fig. 2, must be determined by 
tilting the crystal so that the incident beam is parallel to 
the direction of the diffracted beam K. This can always 
be accomplished, but makes the measurement of all the 
quantities needed for phase determination much more 

complicated than merely taking one zone-axis electron 
diffraction pattern. 

The excitation error is ( = (1 - cos 0)/2 _~ 02/2. For 
a fixed resolution, (_~ O/4d, so for a resolution of 
0.05nm, (_~0 .2nm -1 at 100kV, (_~0 .1nm -1 at 
400kV and (_~0 .04nm -I at 1200kV accelerating 
voltages. These values are comparable with the reflection 
half-width for a 10nm thick crystal (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965). The effect of 
excitation errors of this size depends on the properties of 
the crystal being examined (size, imperfections etc.) and 
on the rocking curve, so generalizations are not 
warranted. However, a study of the voltage-dependent 
effects on dynamical scattering from crystals of copper 
perchlorophthalocyanine (Tivol, Dorset, McCourt & 
Tumer, 1993) found that dynamical scattering accounted 
for the differences observed except at 200 kV and, to a 
much lesser extent, at 300 kV. The cases of these two 
voltages were explained by excitation error effects. For 
400 kV and above, therefore, the excitation errors were 
small enough to be insignificant at 0.19 nm resolution. 
Thus, it is expected that, for crystals about 10nm thick 
and at an accelerating voltage of 1200 kV, the effects of 
non-zero excitation error will be marginal to insignificant 
for atomic level structure determination. 

The phases that are determined from the unitary 
equation are the phases of the scattering amplitudes, 
which are not necessarily the phases of the structure 
factors. In fact they are the 'dynamical phases' used to 
produce the so-called 'electron-density maps' referred to 
by Peng & Wang (1994). Although these maps are 
actually the wave functions produced by convolutions of 
scatterings, and not a true electron density map, they can 
still be reasonably accurate representations of projections 
of the structures. This paper shows that the solution for 
the dynamical phases is essentially unique, although the 
existence of many solutions that fit the intensity data 
almost as well has not been ruled out. 

Phase extension is possible regardless of whether or 
not the scattering can be treated as kinematical, since the 
scattering operator is unitary for the dynamical case; 
thus, the success of phase extension even for crystals 
containing heavy atoms should not be surprising. 
Furthermore, the resolutions at which the multiple 
scattering amplitudes are comparable with the single 
scattering amplitude are less than 0.5 A (Peng & Wang, 
1994), which is beyond the limit to which most organic 
crystals diffract. 

Although the phases of the amplitudes are not 
necessarily those of the structure factors, the resulting 
maps give reasonable atomic positions (Peng & Wang, 
1994), which can be used as starting positions for 
refinement, and, if a multislice calculation is used to 
determine predicted intensities for comparison with those 
observed, the correct structure should be found. 

This is in accord with the results of Cowley & Moodie 
(1959), who predicted that reasonable atomic positions 
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could be determined due to the exit wave function having 
peaks in the same positions as the projected potential for 
the situation that the incident beam is aligned with a zone 
axis. 

The existence of a unique solution for the phases 
means that any solution that is consistent must, in fact, be 
the true solution. While it is comforting to have an 
algorithm that converges uniformly, as under the 
conditions considered in Gerber & Karplus (1972), 
Newton (1968) and Martin (1969), phases obtained in 
other ways can quite freely be used as a starting set, since 
uniqueness implies that they must lead to the correct 
solution. 

The fact that the unitary equation is an operator 
equation means that it holds for any initial state whether 
experimentally realizable or not; furthermore, for a real 
experiment only those reflections with non-zero inten- 
sities contribute to the convolution. Therefore, the 
relation holds if there is only a line of spots, if there is 
a plane of spots, a three-dimensional array, or a 'four- 
dimensional' array as seen with some incommensurate 
structures. 

Although Sayre (1952) solved the structure of 
hydroxyproline using his equation, in the years that 
followed,-its use was felt to be impractical [by way of 
illustration, Lipson & Cochran (1966) said of the Sayre 
equation '... the application is of historical interest only 
and nowadays nobody would contemplate trying to solve 
a crystal structure in this way'.] 

Recent work, however, has shown the use of the Sayre 
equation to be quite practical (Dorset, Kopp, Fryer & 
Tivol, 1995). Particularly, proceeding from a low-order 
phase set determined, for example, from an electron 
micrograph, and using the Sayre equation for phase 
extension, is mathematically straightforward and not too 
computationally intensive. The results are unambigu- 
ously determined, without the complications that can 
arise in multisolution methods. 

Of course, all the foregoing has been derived with the 
assumption that the data are known to infinite accuracy. 
A situation where direct methods could fail to reach 
the correct solution can occur if the errors in the 
measured intensities and the computational errors, such 
as round-off, give rise to equations for the phases with 
significantly incorrect coefficients. In the case of a real 
experiment, the diffracted intensities must be measured 
accurately for a real crystal, which invariably has defects 
and may be bent or consist of a number of crystallites 
with different orientations. Furthermore, the incident 
beam is not a plane wave but has components of differing 
(vector) momentum. Measuring the intensities accurately 
is, therefore, not a trivial undertaking. However, using 
convergent-beam conditions and taking the intensities 
from corresponding locations within each diffracted disc 
is one method that overcomes some of the limitations of 
real crystals (Spence, 1995). In the centrosymmetric case, 
where the phases must be 0 or 7r, the errors have to be 

larger to give incorrect phases than in the non- 
centrosymmetric case, where small errors in some phases 
can propagate through the calculations. In addition, 
calculation of the kinematical scattering operator will be 
more accurate when the logarithmic series converges 
rapidly, i.e. for small deviations of the dynamical 
scattering from the kinematical. 

The final test for the applicability of direct methods of 
phasing to real electron diffraction experiments must be 
the ability to obtain correct structures from real data. So 
far, there have been several successes (Dorset, 1993; 
Dorset, Tivol & Turner, 1991, 1992, 1993), although 
further experimental work is necessary to discover the 
limits of applicability of these methods. 

Although there is no constraint on the scattering other 
than unitarity, so that neither a positive-semidefinite 
potential nor resolved atoms are needed for direct 
methods to find the phases, the process of ref'ming a 
structure by, for example, least-squares search methods 
requires that the structure be described by relatively few 
parameters (compared with the number of data points). 
Therefore, even though the scattering potential for 
electron diffraction is the continuous shielded-Coulomb 
potential, the search parameters are still point locations 
describing the sources of the potential, i.e. atoms. 

Once the source locations have been parameterized, 
however, the potentials generated by the sources can take 
the forms appropriate to the particular physical or 
chemical environment of the atom, such as sp a orbitals 
for tetrahedral carbon, sp 2 for graphitic carbon, net 
charges on ionic bonded atoms etc. This means that more 
realistic potentials can be used for fitting model 
structures to diffraction data, which should lead to better 
structure determination and better and more significant r 
values. 
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Abstract 

The theory for the explanation of equilibrium morphol- 
ogies of incommensurately modulated one-dimensional 
crystals, presented in a previous paper, is extended to the 
case of incommensurately modulated three-dimensional 
crystals. It is shown that, concerning the morphology, 
there exists a one-to-one correspondence between faces 
on the physical crystal and crystallographic hyperplanes 
of the embedded crystal in superspace. This holds for 
both main faces and satellite faces. The occurrence of the 
latter, however, is unique for incommensurately modu- 
lated crystals. It is shown that the stability of satellite 
faces, as well as main faces, can be attributed to a 
principle of selective cuts. The superspace approach that 
is developed leads to a calculation method for surface 
free energies that, in principle, can be applied to 
incommensurately modulated structures of arbitrary 
complexity. Equilibrium morphologies are constructed 
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from the calculated surface free energies by means of a 
standard Wulff plot. The dependence of the equilibrium 
morphology on several structural parameters is studied 
for an incommensurately modulated simple cubic model 
crystal. This study allows for a basic understanding of 
the differences in morphology of AuTe 2 crystals and 
[(CH3)4N]2ZnC14 crystals .  

1. Introduction 

It is well known that the morphology of crystals is often 
determined by flat faces. The orientation of these faces is 
related to directions of Fourier wave vectors of the 
structure; the Fourier wave vectors are parallel to the face 
normals. Crystal faces can be labelled perfectly by a set 
of three integral indices because the Fourier wave vectors 
of a classical crystal build a three-dimensional lattice. In 
incommensurately modulated crystals, it is not possible 
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